

# ADITIVOS E ÓLEOS VEGETAIS PARA MELHORAR O DESEMPENHO E AS CARACTERÍSTICAS DAS CARCAÇAS DE BOVINOS DE CORTE

#### **Alexandre Berndt**

PqC do Pólo Regional do Extremo Oeste/APTA alberndt@apta.sp.gov.br

**Amaury Camilo Valinote** 

Doutorando FZEA/USP

Takahashi, F.H.

Graduando em Zootecnia na FEIS/UNESP

Balcão, L.F.

Graduando em Zootecnia na FEIS/UNESP

Paulo Roberto Leme

Docente da FZEA/USP

João José Assumpção de Abreu Demarchi

PqC do Pólo Regional do Extremo Oeste/APTA

## Uso de Ionóforos

Fundamentados em resultados de pesquisas, diversos pecuaristas vem adotando tecnologias com a finalidade de gerar aumento tanto na produtividade como na eficiência econômica de produção (Lanna, 1997). Com o uso de aditivos observa-se primariamente um aumento da eficiência alimentar e/ou ganho diário. Alguns aditivos possuem efeitos secundários, tais como redução da incidência de acidose, coccidioses e timpanismo, enquanto outros inibem o estro, reduzem abscesso de fígado ou controlam problemas de cascos (Stock & Mader, 1999 citados por Goes, 2004).

Segundo Nicodemo (2001) os ionóforos melhoram a eficiência do metabolismo de energia através da alteração dos tipos de ácidos graxos voláteis (AGV) produzidos no rúmen e diminuem a energia perdida na forma de metano durante a fermentação do alimento. Reduzem também a degradação de proteína ruminal e a síntese de proteína microbiana, tendo apenas um pequeno efeito sobre o desempenho de bovinos alimentados com grãos, mas são importantes para o crescimento de bovinos alimentados com forragem (Goes, 2004).

Em dietas com alta quantidade de grãos não ocorre alteração no ganho de peso, mas sim diminuição do consumo; em dietas baseadas em forragens o consumo não é alterado, mas ocorre aumento do ganho de peso. Esse tipo de comportamento pode ser explicado pelo mecanismo quimiostático de satisfação da ingestão: no aumento da disponibilidade de energia, como ocorre com o uso de ionóforos por um animal consumindo dietas muito energéticas, em que este mecanismo já está atuante, faz com que um menor consumo supra a mesma necessidade de energia. Um animal recebendo a dieta a base de forragens e, portanto, tendo menor densidade energética, o aumento energético não causa redução de consumo e como há mais energia sendo aproveitada para uma mesma ingestão, há melhorias no ganho e na conversão alimentar (Goes, 2004).

Níveis elevados de ionóforos na dieta são tóxicos. O diagnóstico presuntivo de intoxicação por ionóforo baseia-se na ocorrência de problemas alimentares caracterizados clinicamente por anorexia e diarréia. A maior parte dos problemas de intoxicação dá-se no período inicial de adição de ionóforos à dieta, e muitas vezes envolvem erros na mistura ou superdosagem. A dosagem utilizada deve ser ministrada de acordo com as recomendações do fabricante.

#### **Uso de Leveduras**

Segundo Yousri (1982) citado por Goes & Marson (2004) a utilização de leveduras parece reunir características mais favoráveis ao seu emprego na alimentação animal, devido principalmente à riqueza de proteínas de alta qualidade (45-55%), carboidratos, lipídeos e vitaminas do complexo B.

Nisbet & Martin (1991) citam que as leveduras geram mecanismos considerados responsáveis, pelo aumento da quantidade de bactérias ruminais, tais como:

- remoção de O2, devido à atividade respiratória das leveduras;
- fornecimento de nutrientes que estimulam o crescimento e as atividades de certos microrganismos ruminais (Nisbet & Martin, 1990; Newbold et al., 1996, citados por Goes et al., (2004);
- liberação de fatores de crescimento, tais como enzimas essenciais, vitaminas, principalmente as do complexo B e aminoácidos durante a digestão (Nisbet & Martin, 1990; Newbold et al., 1996, apud Ggoes et al, 2004);

A inclusão de leveduras em dietas de ruminantes aumenta a proporção de ácidos graxos voláteis e do pH ruminal, aumenta a digestibilidade dos nutrientes, principalmente da fibra; reduz a concentração de amônia; aumenta o número de bactérias ruminais, principalmente as celulolíticas; aumenta o número de protozoários; altera o fluxo de Nitrogênio (N) e aumenta o fluxo de proteína microbiana para o duodeno (Harrison et al., 1988; Willams et al., 1991, apud Goes et al., 2004). Outros efeitos são: aumento na ingestão de matéria seca; aumento na produção de leite em vacas leiteiras; aumento da porcentagem de gordura no leite; diminuição da produção de metano, além de incremento no ganho de peso e nas características de carcaça (Wohlt et al., 1991; Williams et al., 1991; Harrison et al., 1988; Piva et al., 1993; Mir & Mir, 1994, apud Goes et al (2004).

### Uso de Óleos Vegetais

O principal motivo da limitação do uso da carne bovina na dieta humana ocorre pela restrição ao consumo de gorduras saturadas (Medeiros, 2003). Existe um interesse em aumentar a proporção de ácidos graxos insaturados, particularmente poliinsaturados, pois, vários desses, estariam relacionados a efeitos positivos à saúde; (Williams, 2000, citado por Medeiros, 2003).

Gorduras e óleos têm sido adicionados a dietas de ruminantes com o objetivo de aumentar a concentração energética da dieta e a participação de determinados ácidos graxos no leite e na carne. O principal problema com a utilização de gorduras insaturadas na dieta de ruminantes é o seu efeito na depressão do consumo e, conseqüentemente, sobre a produção de leite (Allen, 2000, citado por Eifert et al., 2006). Em dietas ricas em energia, o consumo é interrompido antes do efeito do enchimento ruminal quando há atendimento dos requerimentos de produção, o que pode justificar a redução de 6,7% no consumo de MS

observado para as dietas contendo óleo de soja em experimentos conduzidos por Eifert et al. (2005).

Quando a ingestão de ácidos graxos insaturados - AGI é muito grande, a capacidade dos microrganismos do rúmen em biohidrogená-los pode ser excedida, ocorrendo uma maior absorção intestinal destes ácidos graxos (Rule & Beitz, 1986, apud Medeiros, 2003). O aumento na concentração de ácidos graxos na dieta inibe a taxa de biohidrogenação, causando enriquecimento na quantidade de ácidos graxos poliinsaturados – AGPI.

O uso de Ionóforos e a redução do pH ruminal também reduzem a biohidrogenação, conforme Demeyer & Doreau, 1999 apud Medeiros 2003).

Usando milho com alto teor de óleo na dieta de novilhos confinados durante 84 dias Andrade et al., 2001, citados por Aferri (2003), verificaram que o peso e o rendimento de carcaça, a espessura de gordura e a área de olho de lombo não sofreram alterações quando comparadas ao milho normal. Observaram, entretanto, que houve um incremento na marmorização e na proporção de ácidos graxos insaturados no músculo Longissimus.

## Confinamento APTA Regional Extremo Oeste 2006 (projeto NRP-2097)

Em projeto conduzido no confinamento experimental da Unidade de Pesquisa e Desenvolvimento de Andradina, SP (Figuras 1, 2 e 3), foram utilizados 52 novilhos Nelore, inteiros, com peso vivo médio inicial de 233 kg, durante sete períodos de 28 dias cada. A alimentação fornecida diariamente foi constituída de silagem mista de milho e capim colonião e concentrado contendo milho, farelo de algodão, REFINAZIL®, óleo de girassol, núcleo mineral e calcário calcítico (Tabela1). A composição da dieta encontra-se na Tabela 2.

Tabela 1. Ingredientes utilizados no concentrado da dieta experimental.

| Ingredientes       | (%)  |
|--------------------|------|
| Milho              | 47,6 |
| Farelo de Algodão  | 5,8  |
| Refinazil          | 39,8 |
| Óleo de Girassol   | 4,6  |
| Núcleo Mineral     | 0,9  |
| Calcário Calcítico | 1,4  |

Tabela 2. Composição do concentrado da dieta experimental.

| Composição                       | (%)  |
|----------------------------------|------|
| Matéria Seca                     | 89,4 |
| Proteína Bruta                   | 16,8 |
| Extrato Etéreo                   | 8,1  |
| Energia Metabolizável (MJ/kg MS) | 13,2 |

O ganho médio de peso dos animais, a média de consumo de Matéria Original (MO), silagem, concentrado, MS e MS em % de Peso Vivo (PV) por dia e a média de conversão alimentar foram feitas com base nos dados referentes aos cinco primeiros períodos de experimentação.

#### Análise de Custo

O custo do concentrado (Ração) está apresentado na Tabela 3 e da arroba (@) apresentado na Tabela 4, foram calculados com base nos dados referentes aos cinco primeiros períodos de experimentação e com o levantamento de preços do mês de julho de 2006. Segundo Restle & Vaz, 1999, apud Pacheco et al. (2006) no processo de terminação de bovinos de corte em confinamento, a alimentação (volumoso + concentrado) representa mais de 70% do custo total de produção, portanto a arroba produzida foi estimada com base nesse índice.

Segundo o fabricante do RUMENSIN®, o uso recomendado do produto para ruminantes deve ser de 1 a 3 gramas/animal.dia, que equivale de 100 a 300 miligramas de monensina.

Tabela 3. Custo da alimentação (volumoso e concentrado).

|                   | Ingredientes |        | Dieta        |          |
|-------------------|--------------|--------|--------------|----------|
| Ingredientes      | kg/Batida    | Preço  | Custo/Batida | Custo    |
|                   |              | R\$/kg | R\$/kg       | R\$/kg   |
| Milho             | 142,75       | 0,247  | 35,26        | 0,12     |
| Farelo de algodão | 17,4         | 0,24   | 4,17         | 0,014    |
| Refinazil         | 119,45       | 0,225  | 26,87        | 0,089    |
| Óleo de girassol  | 13,65        | 2,64   | 36,04        | 0,12     |
| Purina Fós 40     | 2,7          | 0,7    | 1,89         | 0,0063   |
| Calc. Calcítico   | 4,05         | 0,134  | 0,54         | 0,001809 |
| Total             |              |        | 104,78       | 0,349    |
| Silagem           |              | 0,07   |              | 0,07     |

Fonte: FAEP (Fed. Agri. Estado do Paraná), AGROVAL.

Tabela 4. Custo da arroba produzida.

| Consumo                                    |                         |
|--------------------------------------------|-------------------------|
| MO                                         | 14,84 kg MO/ dia        |
| MS                                         | 7,69 kg MS/ dia         |
| MS (% PV)                                  | 2,64 kg MS % PV/ dia    |
| Silagem                                    | 11,28 kg/ animal/ dia   |
| Concentrado                                | 5,99 kg/ animal/ dia    |
| Conversão alimentar                        | 7,18 kg MS/ kg GPV      |
| Ganho                                      |                         |
| Ganho de peso vivo médio                   | 1,24 kg/ dia            |
| Ganho de carcaça por dia                   | 0,68 kg de carcaça/ dia |
| Custos                                     |                         |
| Custo por kg de concentrado                | R\$ 0,35/ kg            |
| Custo por kg de Silagem                    | R\$ 0,07/ kg            |
| Custo de 0,68 kg de carcaça por dia        | R\$ 2,89/ dia           |
| Custo da @ produzida                       | R\$ 63,75/ @            |
| Custo da @ carcaça produzida<br>@ (arroba) | R\$ 91,00/ @            |

O custo do concentrado obtido foi de R\$ 0,35/kg de produto (Tabela 4), considerando os preços referentes ao mês de julho de 2006 na região de Andradina e de dados obtidos da FAEP, 2006 (Tabela 3). O custo da arroba produzida foi de R\$ 91,00 considerando-se 55% de rendimento de carcaça. Portanto, é necessária uma análise econômica antes da tomada

de qualquer decisão que envolva riscos financeiros, considerando que o preço da arroba neste período era de R\$ 51,00.

Figura 1. Visão geral do confinamento experimental da UPD de Andradina, APTA Regional Extremo-Oeste.



Figura 2. Adição de Óleo de Girassol ao concentrado.



Figura 3. Fornecimento de aditivos no momento do arraçoamento.



#### Referências

AFERRI. G. Desempenho e características da carcaça de novilhos alimentados com dietas contendo diferentes fontes de gordura. Pirassununga, SP: Universidade de São Paulo, 2003. 49p. Tese (Mestrado em qualidade e produtividade animal) – Universidade de São Paulo, 2003.

EIFERT. E, C. et al. Consumo, produção e composição do leite de vacas alimentadas com óleo de soja e diferentes fontes de carboidratos na dieta. Revista Brasileira de Zootecnia. v.35, n.1, p.211-218, 2006.

EIFERT. E, C. et al. Efeito da combinação de óleo de soja e monensina na dieta sobre o consumo de matéria seca e a digestão em vacas lactantes. Revista Brasileira de Zootecnia. v.34, n.1, p.297-308, 2005.

FAEP, Federação da Agricultura do Estado do Paraná, URL: <a href="www.faep.com.br">www.faep.com.br</a>, acessado em 25/08/2006.

GOES. R, H, T, B. Aditivos de alimento para bovinos suplementados no pasto. Cadernos Técnicos de Veterinária e Zootecnia, Belo horizonte: UNIVERSIDADE FEDERAL DE BELO HORIZONTE. n. 43, p. 34 – 40, 2004.

GOES. R, H, T, B. MARSON. E, P. Leveduras e enzimas na alimentação de ruminantes. Cadernos Técnicos de Veterinária e Zootecnia, Belo horizonte: UNIVERSIDADE FEDERAL DE BELO HORIZONTE. n. 43, p. 51 – 60, 2004.

LANNA, D.P.D. et al. Característica de carcaça de bovinos de diferentes grupos genéticos em crescimento compensatório. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 34. 1997, Juiz de Fora. Anais... Juiz de Fora: SBZ, 1997. p. 349.

MEDEIROS. S, R. Modulação no perfil lipídico de bovinos: implicações na produção e aceitação da carne. In: V SIMPÓSIO GOIANO A SOBRE MANEJO E NUTRIÇÃO DE BOVINOS DE CORTE E LEITE. CBNA – Goiânia, GO – maio, 2003. p. 49 – 59.

NICODEMO. M, L, F. Uso de aditivos na dieta de bovinos de corte. Campo Grande, MS: Documentos, EMBRAPA Gado de Corte, v. 106, p. 12 – 20, 2001.

NISBET, D.J.; MARTIN, S.A. Effect of a Saccharimyces cerevisiae culture on lactate utilization by ruminal bacterium Selenomonas ruminantium. Journal of Animal Science, v. 69, p.4628-4633, 1991.